Linear Algebra II

05/07/2013, Thursday, 09:00-12:00
$1(13+5=18 \mathrm{pts})$

Consider the vector space $C[-1,1]$, i.e. the vector space of continuous functions defined on the interval $[-1,1]$, and the inner product

$$
\langle f, g\rangle=\int_{-1}^{1} f(x) g(x) d x
$$

(a) By applying the Gram-Schmidt process, find an orthonormal basis for the subspace spanned by $\left\{1, x, x^{2}\right\}$.
(b) Find the coordinates of the function $1+x^{2}$ in the orthonormal basis obtained above.

REQUIRED KNOWLEDGE: inner product, Gram-Schmidt process.

Solution:

(1a):
We begin with computing the involved inner products:

$$
\begin{aligned}
\langle 1,1\rangle & =\int_{-1}^{1} 1 \cdot 1 d x=\left.x\right|_{-1} ^{1}=2 \\
\langle 1, x\rangle & =\int_{-1}^{1} 1 \cdot x d x=\left.\frac{x^{2}}{2}\right|_{-1} ^{1}=0 \\
\left\langle 1, x^{2}\right\rangle & =\int_{-1}^{1} 1 \cdot x^{2} d x=\left.\frac{x^{3}}{3}\right|_{-1} ^{1}=\frac{2}{3} \\
\langle x, x\rangle & =\int_{-1}^{1} x \cdot x d x=\left.\frac{x^{3}}{3}\right|_{-1} ^{1}=\frac{2}{3} \\
\left\langle x, x^{2}\right\rangle & =\int_{-1}^{1} x \cdot x^{2} d x=\left.\frac{x^{4}}{4}\right|_{-1} ^{1}=0 \\
\left\langle x^{2}, x^{2}\right\rangle & =\int_{-1}^{1} x^{2} \cdot x^{2} d x=\left.\frac{x^{5}}{5}\right|_{-1} ^{1}=\frac{2}{5} .
\end{aligned}
$$

By applying the Gram-Schmidt process, we obtain:

$$
\begin{aligned}
& u_{1}=\frac{1}{\|1\|} \\
& u_{1}=\frac{1}{\sqrt{2}} \\
& u_{2}=\frac{x-p_{1}}{\left\|x-p_{1}\right\|} \\
& p_{1}=\left\langle x, \frac{1}{\sqrt{2}}\right\rangle \frac{1}{\sqrt{2}}=0 \\
& x-p_{1}=x \\
& \left\|x-p_{1}\right\|^{2}=\langle x, x\rangle \\
& =\frac{2}{3} \\
& \left\|x-p_{1}\right\|=\frac{\sqrt{2}}{\sqrt{3}} \\
& u_{2}=\frac{\sqrt{3}}{\sqrt{2}} x \\
& u_{3}=\frac{x^{2}-p_{2}}{\left\|x^{2}-p_{2}\right\|} \\
& p_{2}=\left\langle x^{2}, \frac{1}{\sqrt{2}}\right\rangle \frac{1}{\sqrt{2}}+\left\langle x^{2}, \frac{\sqrt{3}}{\sqrt{2}} x\right\rangle \frac{\sqrt{3}}{\sqrt{2}} x=\frac{1}{3} \\
& x^{2}-p_{2}=x^{2}-\frac{1}{3} \\
& \left\|x^{2}-p_{2}\right\|^{2}=\left\langle x^{2}-\frac{1}{3}, x^{2}-\frac{1}{3}\right\rangle \\
& =\left\langle x^{2}, x^{2}\right\rangle-2\left\langle x^{2}, \frac{1}{3}\right\rangle+\left\langle\frac{1}{3}, \frac{1}{3}\right\rangle \\
& =\frac{2}{5}-2 \frac{1}{3} \frac{2}{3}+\frac{2}{9} \\
& =\frac{8}{45} \\
& \left\|x^{2}-p_{2}\right\|=\frac{2 \sqrt{2}}{3 \sqrt{5}} \\
& u_{3}=\frac{3 \sqrt{5}}{2 \sqrt{2}}\left(x^{2}-\frac{1}{3}\right) .
\end{aligned}
$$

(1b): We have

$$
\begin{aligned}
1+x^{2} & =\left\langle 1+x^{2}, u_{1}\right\rangle u_{1}+\left\langle 1+x^{2}, u_{2}\right\rangle u_{2}+\left\langle 1+x^{2}, u_{3}\right\rangle u_{3} \\
& =\left\langle 1+x^{2}, \frac{1}{\sqrt{2}}\right\rangle u_{1}+\left\langle 1+x^{2}, \frac{\sqrt{3}}{\sqrt{2}} x\right\rangle u_{2}+\left\langle 1+x^{2}, \frac{3 \sqrt{5}}{2 \sqrt{2}}\left(x^{2}-\frac{1}{3}\right)\right\rangle u_{3} \\
& =\left(\frac{2}{\sqrt{2}}+\frac{2}{3 \sqrt{2}}\right) u_{1}+0+\frac{3 \sqrt{5}}{2 \sqrt{2}}\left\langle 1+x^{2}, x^{2}-\frac{1}{3}\right\rangle u_{3} \\
& =\frac{4 \sqrt{2}}{3} u_{1}+\frac{3 \sqrt{5}}{2 \sqrt{2}}\left(\frac{2}{3}-\frac{2}{3}+\frac{2}{5}-\frac{2}{9}\right) u_{3} \\
& =\frac{4 \sqrt{2}}{3} u_{1}+\frac{2 \sqrt{2}}{3 \sqrt{5}} u_{3} .
\end{aligned}
$$

Let $M \in \mathbb{R}^{4 \times 4}$ with the characteristic polynomial $p_{M}(\lambda)=\lambda^{4}-1$.
(a) Is M nonsingular? Why?
(b) Is M symmetric? Why?
(c) Is M diagonalizable? Why?
(d) Show that $M^{-2}=M^{2}$.

REQUIRED KNOWLEDGE: eigenvalues, eigenvectors, diagonalization, Cayley-Hamilton theorem.

SOLUTION:

(2a): A matrix M is nonsingular if and only if zero is not one of its eigenvalues, that is $p_{M}(0) \neq 0$. Note that $p_{M}(0)=-1$. Hence, the matrix M is nonsingular.
(2b): All eigenvalues of a symmetric matrix are real numbers. The eigenvalues can be found by solving the equation $p_{M}(\lambda)=0$. This results in $\lambda_{1}=-1, \lambda_{2}=1, \lambda_{3}=-i$, and $\lambda_{4}=i$. As such, the matrix M cannot be symmetric.
(2c): A sufficient condition for diagonalizability is to have distinct eigenvalues. Then, it follows from the previous subproblem that the matrix M is diagonalizable.
(2d): We know from the Cayley-Hamilton theorem that $p_{M}(M)=0$. This means that $M^{4}=I$. By multiplying both sides by M^{-2}, we obtain $M^{2}=M^{-2}$.
(a) Consider the function

$$
f(x, y, z)=-\frac{1}{4}\left(x^{-4}+y^{-4}+z^{-4}\right)+y z-x-2 y-2 z .
$$

(i) Verify that $(1,1,1)$ is a stationary point.
(ii) Determine whether this point is a local minimum, local maximum, or saddle point.
(b) Let A be a symmetric positive definite matrix and B be a symmetric nonsingular matrix. Show that
(i) A is nonsingular.
(ii) A^{-1} is positive definite.
(iii) $B^{2}-2 I+B^{-2}$ is positive semi-definite.

REQUIRED KNOWLEDGE: positive/definite matrices, leading principal minor test for positive definiteness.

Solution:

(3a-i): Let's find the partial derivatives with respect to the variables:

$$
\frac{\partial f}{\partial x}=x^{-5}-1 \quad \frac{\partial f}{\partial y}=y^{-5}+z-2 \quad \frac{\partial f}{\partial z}=z^{-5}+y-2 .
$$

Note that

$$
\left.\frac{\partial f}{\partial x}\right|_{(1,1,1)}=\left.\frac{\partial f}{\partial y}\right|_{(1,1,1)}=\left.\frac{\partial f}{\partial z}\right|_{(1,1,1)}=0 .
$$

Therefore, $(1,1,1)$ is a stationary point.
(3a-ii): To decide the nature of this stationary point, we look at the Hessian matrix:

$$
H=\left[\begin{array}{ccc}
\frac{\partial^{2} f}{\partial x^{2}} & \frac{\partial^{2} f}{\partial x \partial y} & \frac{\partial^{2} f}{\partial x \partial z} \\
\frac{\partial^{2} f}{\partial x \partial y} & \frac{\partial^{2} f}{\partial y^{2}} & \frac{\partial^{2} f}{\partial y \partial z} \\
\frac{\partial^{2} f}{\partial x \partial z} & \frac{\partial^{2} f}{\partial y \partial z} & \frac{\partial^{2} f}{\partial z^{2}}
\end{array}\right]_{(1,1,1)}=\left[\begin{array}{ccc}
-5 x^{-6} & 0 & 0 \\
0 & -5 y^{-6} & 1 \\
0 & 1 & -5 z^{-6}
\end{array}\right]_{(1,1,1)}=\left[\begin{array}{ccc}
-5 & 0 & 0 \\
0 & -5 & 1 \\
0 & 1 & -5
\end{array}\right] .
$$

Since its diagonal elements are not positive, H cannot be positive definite. To check whether it is negative definite, we can check positive definiteness of $-H$. Note that

$$
-H=\left[\begin{array}{ccc}
5 & 0 & 0 \\
0 & 5 & -1 \\
0 & -1 & 5
\end{array}\right]
$$

This matrix is positive definite as the principal minors are, respectively, 5, 25, and 120. Therefore, the Hessian is negative definite and the stationary point $(1,1,1)$ corresponds to a local maximum.
($3 \mathbf{b}-\mathbf{i}$): Since the matrix A is symmetric positive definite, all its eigenvalues must be positive. Therefore, zero is not an eigenvalue of A. Consequently, A is nonsingular.
(3b-ii): Let x be a nonzero vector. Note that

$$
x^{T} A^{-1} x=y^{T} A y
$$

where $x=A y$. Since A is nonsingular, y is nonzero. Then, it follows from positive definiteness of A that

$$
x^{T} A^{-1} x>0
$$

for any nonzero vector x. Consequently, A^{-1} is positive definite.
(3b-iii): Note that $B^{2}-2 I+B^{-2}=\left(B-B^{-1}\right)\left(B-B^{-1}\right)$. Since B is symmetric, we have

$$
B^{2}-2 I+B^{-2}=\left(B-B^{-1}\right)^{T}\left(B-B^{-1}\right)
$$

and hence

$$
x^{T}\left(B^{2}-2 I+B^{-2}\right) x=x^{T}\left(B-B^{-1}\right)^{T}\left(B-B^{-1}\right) x=\left\|\left(B-B^{-1}\right) x\right\|^{2} \geqslant 0 .
$$

This means that $B^{2}-2 I+B^{-2}$ is positive semi-definite.
(a) Find the singular value decomposition of the matrix

$$
\left[\begin{array}{lll}
2 & 1 & 0 \\
1 & 2 & 0 \\
0 & 0 & 2 \\
0 & 0 & 0
\end{array}\right]
$$

(b) Consider the decomposition

$$
\left[\begin{array}{lll}
2 & 5 & 4 \\
6 & 3 & 0 \\
6 & 3 & 0 \\
2 & 5 & 4
\end{array}\right]=\left[\begin{array}{cccc}
\frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\
\frac{1}{2} & -\frac{1}{2} & -\frac{1}{2} & \frac{1}{2} \\
\frac{1}{2} & -\frac{1}{2} & \frac{1}{2} & -\frac{1}{2} \\
\frac{1}{2} & \frac{1}{2} & -\frac{1}{2} & -\frac{1}{2}
\end{array}\right]\left[\begin{array}{ccc}
12 & 0 & 0 \\
0 & 6 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{ccc}
\frac{2}{3} & \frac{2}{3} & \frac{1}{3} \\
-\frac{2}{3} & \frac{1}{3} & \frac{2}{3} \\
\frac{1}{3} & -\frac{2}{3} & \frac{2}{3}
\end{array}\right]
$$

(i) Is this a singular value decomposition? Why?
(ii) Find the closest (with respect to the Frobenius norm) matrices of rank 1 and 2.

REQUIRED KNOWLEDGE: singular value decomposition, lower rank approximations.

SOLUTION:

(4a):
Note that

$$
A^{T} A=\left[\begin{array}{llll}
2 & 1 & 0 & 0 \\
1 & 2 & 0 & 0 \\
0 & 0 & 2 & 0
\end{array}\right]\left[\begin{array}{lll}
2 & 1 & 0 \\
1 & 2 & 0 \\
0 & 0 & 2 \\
0 & 0 & 0
\end{array}\right]=\left[\begin{array}{lll}
5 & 4 & 0 \\
4 & 5 & 0 \\
0 & 0 & 4
\end{array}\right]
$$

Then, the characteristic polynomial of $A^{T} A$ can be found as:

$$
p(\lambda)=\operatorname{det}\left(A^{T} A-\lambda I\right)=-(\lambda-4)\left((\lambda-5)^{2}-16\right)
$$

This means that the eigenvalues of $A^{T} A$ are

$$
\lambda_{1}=9 \quad \lambda_{2}=4 \quad \lambda_{3}=1
$$

Hence, the singular values of A are given by

$$
\sigma_{1}=3 \quad \sigma_{2}=2 \quad \sigma_{3}=1
$$

To diagonalise $A^{T} A$, we need to compute its eigenvectors. For $\lambda_{1}=9$, we should solve:

$$
\left(A^{T} A-9 I\right) v_{1}=\left[\begin{array}{rrr}
-4 & 4 & 0 \\
4 & -4 & 0 \\
0 & 0 & -5
\end{array}\right] v_{1}=0
$$

This leads to

$$
v_{1}=\frac{1}{\sqrt{2}}\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]
$$

Similarly, by solving

$$
\left(A^{T} A-4 I\right) v_{2}=\left[\begin{array}{lll}
1 & 4 & 0 \\
4 & 1 & 0 \\
0 & 0 & 0
\end{array}\right] v_{2}=0
$$

we obtain

$$
v_{2}=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]
$$

as the normalized eigenvector for $\lambda_{2}=4$. Finally, we solve

$$
\left(A^{T} A-I\right) v_{3}=\left[\begin{array}{lll}
4 & 4 & 0 \\
4 & 4 & 0 \\
0 & 0 & 3
\end{array}\right] v_{3}=0
$$

and obtain

$$
v_{3}=\frac{1}{\sqrt{2}}\left[\begin{array}{r}
1 \\
-1 \\
0
\end{array}\right]
$$

Therefore, $A^{T} A$ can be diagonalized by the orthogonal matrix

$$
V=\left[\begin{array}{rrr}
1 / \sqrt{2} & 0 & 1 / \sqrt{2} \\
1 / \sqrt{2} & 0 & -1 / \sqrt{2} \\
0 & 1 & 0
\end{array}\right]
$$

that is

$$
\left[\begin{array}{lll}
5 & 4 & 0 \\
4 & 5 & 0 \\
0 & 0 & 4
\end{array}\right]\left[\begin{array}{rrr}
1 / \sqrt{2} & 0 & 1 / \sqrt{2} \\
1 / \sqrt{2} & 0 & -1 / \sqrt{2} \\
0 & 1 & 0
\end{array}\right]=\left[\begin{array}{rrr}
1 / \sqrt{2} & 0 & 1 / \sqrt{2} \\
1 / \sqrt{2} & 0 & -1 / \sqrt{2} \\
0 & 1 & 0
\end{array}\right]\left[\begin{array}{lll}
9 & 0 & 0 \\
0 & 4 & 0 \\
0 & 0 & 1
\end{array}\right] .
$$

Since the number of non-zero singular values is 3 , we have $\operatorname{rank}(A)=3$. Then, we get

$$
\begin{aligned}
& u_{1}=\frac{1}{\sigma_{1}} A v_{1}=\frac{1}{3}\left[\begin{array}{lll}
2 & 1 & 0 \\
1 & 2 & 0 \\
0 & 0 & 2 \\
0 & 0 & 0
\end{array}\right] \frac{1}{\sqrt{2}}\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]=\frac{1}{\sqrt{2}}\left[\begin{array}{l}
1 \\
1 \\
0 \\
0
\end{array}\right], \\
& u_{2}=\frac{1}{\sigma_{2}} A v_{2}=\frac{1}{2}\left[\begin{array}{lll}
2 & 1 & 0 \\
1 & 2 & 0 \\
0 & 0 & 2 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
1 \\
0
\end{array}\right], \\
& u_{3}=\frac{1}{\sigma_{3}} A v_{3}=\left[\begin{array}{lll}
2 & 1 & 0 \\
1 & 2 & 0 \\
0 & 0 & 2 \\
0 & 0 & 0
\end{array}\right] \frac{1}{\sqrt{2}}\left[\begin{array}{r}
1 \\
-1 \\
0
\end{array}\right]=\frac{1}{\sqrt{2}}\left[\begin{array}{r}
1 \\
-1 \\
0 \\
0
\end{array}\right] .
\end{aligned}
$$

To obtain the last column of U, we need to find an orthonormal basis for the null space of A^{T}. Note that

$$
0=A^{T} x=\left[\begin{array}{llll}
2 & 1 & 0 & 0 \\
1 & 2 & 0 & 0 \\
0 & 0 & 2 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]
$$

Therefore, we get

$$
\mathcal{N}\left(A^{T}\right)=\operatorname{span}\left(\left[\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right]\right) .
$$

This leads to

$$
u_{4}=\left[\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right]
$$

Consequently, a singular decomposition for A can be given as

$$
A=\left[\begin{array}{rrrr}
1 / \sqrt{2} & 0 & 1 / \sqrt{2} & 0 \\
1 / \sqrt{2} & 0 & -1 / \sqrt{2} & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{lll}
3 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{rrr}
1 / \sqrt{2} & 1 / \sqrt{2} & 0 \\
0 & 0 & 1 \\
1 / \sqrt{2} & -1 / \sqrt{2} & 0
\end{array}\right] .
$$

(4b-i): Note that the two matrices

$$
\left[\begin{array}{rrrr}
\frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\
\frac{1}{2} & -\frac{1}{2} & -\frac{1}{2} & \frac{1}{2} \\
\frac{1}{2} & -\frac{1}{2} & \frac{1}{2} & -\frac{1}{2} \\
\frac{1}{2} & \frac{1}{2} & -\frac{1}{2} & -\frac{1}{2}
\end{array}\right]
$$

$\left[\begin{array}{rrr}\frac{2}{3} & \frac{2}{3} & \frac{1}{3} \\ -\frac{2}{3} & \frac{1}{3} & \frac{2}{3} \\ \frac{1}{3} & -\frac{2}{3} & \frac{2}{3}\end{array}\right]$
are orthogonal. Also, note that the matrix

$$
\left[\begin{array}{ccc}
12 & 0 & 0 \\
0 & 6 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

is of the required form for the singular value decomposition. As such, we can conclude that the given decomposition is a singular value decomposition.
(4b-ii): The best rank 1 approximation can be found as:

$$
\left[\begin{array}{rrrr}
\frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\
\frac{1}{2} & -\frac{1}{2} & -\frac{1}{2} & \frac{1}{2} \\
\frac{1}{2} & -\frac{1}{2} & \frac{1}{2} & -\frac{1}{2} \\
\frac{1}{2} & \frac{1}{2} & -\frac{1}{2} & -\frac{1}{2}
\end{array}\right]\left[\begin{array}{rrr}
12 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{rrr}
\frac{2}{3} & \frac{2}{3} & \frac{1}{3} \\
-\frac{2}{3} & \frac{1}{3} & \frac{2}{3} \\
\frac{1}{3} & -\frac{2}{3} & \frac{2}{3}
\end{array}\right]=\left[\begin{array}{lll}
4 & 4 & 2 \\
4 & 4 & 2 \\
4 & 4 & 2 \\
4 & 4 & 2
\end{array}\right] .
$$

The rank 2 approximation is the matrix itself as it is of rank 2 .
(a) Consider the matrix

$$
\left[\begin{array}{ll}
a & b \\
1 & a
\end{array}\right]
$$

where a and b are real numbers. For which values of (a, b) is this matrix diagonalizable?
(b) Consider the matrix

$$
A=\left[\begin{array}{ccc}
2 & 1 & 0 \\
-1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right] .
$$

Show that $\operatorname{det}(\lambda I-A)=(\lambda-1)^{3}$. Put it into the Jordan canonical form.

REQUIRED KNOWLEDGE: diagonalization, Jordan canonical form.

Solution:

(5a): The characteristic polynomial for the matrix

$$
\left[\begin{array}{ll}
a & b \\
1 & a
\end{array}\right]
$$

can be found as

$$
p(\lambda)=(\lambda-a)^{2}-b .
$$

Observe that the eigenvalues are distinct if and only if $b \neq 0$. In this case, the matrix is diagonalizable. If $b=0$, we have the matrix

$$
\left[\begin{array}{ll}
a & 0 \\
1 & a
\end{array}\right] .
$$

The eigenvalues are $\lambda_{1}=\lambda_{2}=a$. To find the eigenvector, one solves the equation:

$$
\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right] x=0 .
$$

Clearly, there is only one linearly independent eigenvector. Hence, this matrix is not diagonalizable.
Therefore, we arrive at the conclusion that the given matrix is diagonalizable if and only if $b \neq 0$.
(5b): Note that

$$
\begin{aligned}
\operatorname{det}(A-\lambda I) & =\operatorname{det}\left(\left[\begin{array}{rrr}
2-\lambda & 1 & 0 \\
-1 & -\lambda & 0 \\
0 & 0 & 1-\lambda
\end{array}\right]\right)=-\lambda(1-\lambda)(2-\lambda)+(1-\lambda) \\
& =(1-\lambda)(-\lambda(2-\lambda)+1) \\
& =(1-\lambda)\left(1-2 \lambda+\lambda^{2}\right) \\
& =(1-\lambda)^{3} .
\end{aligned}
$$

This proves the first part.

Note that the eigenvalues are $\lambda_{1}=\lambda_{2}=\lambda_{3}=1$. For the Jordan canonical form, we begin by finding out the eigenvectors:

$$
0=(A-I) v=\left[\begin{array}{rrr}
1 & 1 & 0 \\
-1 & -1 & 0 \\
0 & 0 & 0
\end{array}\right] v
$$

This leads to, for instance, the two linearly independent eigenvectors:

$$
x=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right] \quad \text { and } \quad y=\left[\begin{array}{r}
1 \\
-1 \\
0
\end{array}\right]
$$

Also note that $(A-I)^{2}=0$. This means that there will be two Jordan blocks. Finally, we need to check the feasibility of

$$
(A-I) x^{\prime}=x \quad \text { and } \quad(A-I) y^{\prime}=y
$$

Note that

$$
(A-I) x^{\prime}=\left[\begin{array}{c}
x_{1}^{\prime}+x_{2}^{\prime} \\
-x_{1}^{\prime}-x_{2}^{\prime} \\
0
\end{array}\right]
$$

Then, $(A-I) x^{\prime}=x$ is not solvable. Also note that

$$
(A-I) y^{\prime}=\left[\begin{array}{c}
y_{1}^{\prime}+y_{2}^{\prime} \\
-y_{1}^{\prime}-y_{2}^{\prime} \\
0
\end{array}\right]=\left[\begin{array}{r}
1 \\
-1 \\
0
\end{array}\right]
$$

yields, for instance,

$$
y^{\prime}=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]
$$

Consequently, we arrive the following Jordan canonical form:

$$
\left[\begin{array}{rrr}
2 & 1 & 0 \\
-1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{rrr}
0 & 1 & 1 \\
0 & -1 & 0 \\
1 & 0 & 0
\end{array}\right]=\left[\begin{array}{rrr}
0 & 1 & 1 \\
0 & -1 & 0 \\
1 & 0 & 0
\end{array}\right]\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right] .
$$

